您在這裡

【易經543】三錢法的「陰陽」問題,真相不是你想的那樣!

Jack 在 2016, 八月 14 - 22:44 發表

為了解決「三錢法」起卦時的陰陽面爭議問題,先前寫了一篇文章〈談卜卦時硬幣的正反面與陰陽問題〉。

原本以為真正解決了銅板算卦的陰陽面認定爭議,但後來偶然間看到更多古籍記載之後才發現,嚴格來說,我們以陰陽面來看三錢法根本是錯的!

因為,任何以陰陽面來討論三錢法取象問題的,全都沒有抓到問題的核心:包括先前我寫的文章。因此此文必需推翻自己先前的看法。

追本溯源

要解決任何問題,都必需盡可能找到問題的最源頭。源頭找到了,問題自然可解。

三錢法古稱「以錢代蓍」法,就是用三枚銅錢來起卦,此法主要是要取代最傳統的揲蓍法。因為揲蓍法過於繁瑣。

基本上該法原本是隨著火珠林法或是京房易而流傳開的,因此一些傳統儒者相當反對採用此法,認為《周易》不該以錢來代蓍。至於是不是京房所創,或是傳說中的鬼谷子就不可得知。

《朱子語類》(六十六卷):

今人以三錢當揲蓍,此是以納甲附六爻。納甲乃漢焦贛、京房之學。

關於這個方法,《卜易》這麼說:

搖出得●◎◎,一背為單,畫─。得●●◎,二背為折,畫 - -。得●●●,三背為重,畫○。得◎◎◎,三面為交,畫X。(按:「二背為折」應作「二背為拆」。)

《卜筮全書》這麼寫:

一背為單,畫─。二背為拆,畫- -。三背為重,畫囗。純字為交,畫X。

三錢法裡把一個背面稱作單,相當於少陽。一個字面當拆,相當於少陰。三個背面當作重(重錢),相當於老陽。三個字面當作交(交錢),相當於老陰。如果以陰陽來類比,似乎可據以推論這是以字面為陰,背面(光面)為陽。至於古代如此定義到底是基於怎樣的聯想?〈談卜卦時硬幣的正反面與陰陽問題〉一文裡並未找出答案。

本文則要進一步為該問題提出可能的終極解答。

〈士冠禮〉「筮與席所卦者」唐朝賈公彥疏:

筮法依七八九六之爻而記之,但古用木畫地,今則用錢。以三少為重錢,重錢則九也。三多為交錢,交錢則六也。兩多一少為單錢,單錢則七也。兩少一多為拆錢,拆錢則八也。

惠棟《易漢學》:

胡一桂筮法變卦說平庵項氏曰:以京易考之,世所傳火珠林者,即其法也。以三錢擲之,兩背一面為拆,即兩少一多,少陰爻也。兩面一背為單,即兩多一少,少陽爻也。俱面為交,交者拆之聚,即三多,老陰爻也。俱背為重,重者單之積,即三少,老陽爻也。蓋以錢代蓍,一錢當一揲,此後人務徑截,以趨卜肆之便,而本意尚可考。

賈公彥的說法似乎為三錢法的發展提出了可能的線索。「筮法依七八九六之爻而記之,但古用木畫地,今則用錢」,古代記錄爻象時似乎先是以木畫地,後來則改用銅錢取代。所謂的「重錢」、「交錢」、「單錢」、「拆錢」感覺有點是在描繪錢的擺置狀況,例如重錢會不會講的是三錢重疊在一起?交錢為交叉平擺?單錢為只拿一錢擺置,拆錢為放置兩錢?後來這些銅錢的擺置法又演變成三錢法,直接丟三錢來取卦象。不過這只是個人從賈公彥說法所提出的猜想,實情還需更多的證據來證明。

無論如何,總之,我們至少可以很確定的說:後來演變出的三錢法其實是與揲蓍法程序有緊密關聯的,三個銅錢替代的是揲蓍程序之中的一些筮數的演算變數,根本不是陰陽。

因此必需先了解揲蓍法的數字演變邏輯,才能夠真的了解三錢法。特別是何為多?何為少?為何三多為六?三少為九?

什麼是多?少?

「多」與「少」是指揲蓍過程當中,每一變(四營)之後的歸奇數。不過朱熹〈筮儀〉稱為「偶」與「奇」:

掛扐之數,五、四為奇,九、八為偶。掛扐三奇合十三策,則過揲三十六策為老陽,其畫為囗,所謂重也。掛扐兩奇一偶,合十七策,則過揲三十二策而為少陰,其畫為- -,所謂拆也。掛扐兩偶一奇合二十一策,則過揲二十八策而為少陽,其畫為-,所謂單也。掛扐三偶合二十五策,則過揲二十四策而為老陰,其畫為X,所謂交也。

前文以陰陽面來理解三錢法,然後在銅錢的那一面為陰那一面為陽上爭論不休,顯然沒有抓到問題核心。

從上面資料來看,很清楚的,以錢代蓍的取象,最早是基於揲蓍程序的聯想或模擬,而不是我們現今認為的陰陽。

三個錢幣象徵的即是揲蓍過程當中的「三變」。前面《易漢學》引文說的「以錢代蓍,一錢當一揲」理當改為「一錢當一易」或「一錢當一變」。

揲蓍過程當中,每一爻都包含了三變,每一變裡都有「四營」,四營就是四個步驟:分二、掛一、揲四,歸奇,即《繫辭傳》大衍章所說的:「分而為二以象兩,掛一以象三,揲之以四以象四時,歸奇於扐以象閏,五歲再閏,故再扐而後掛。」

由於一爻有三變,因此每一爻的生成都包含了三次的「歸奇」,每完成一次「歸奇」,就代表揲蓍歷經了一次「變」化或變易,這也是《繫辭傳》大衍章所說的「四營而成易,十有八變而成卦」。易就是變,四營成易就是四個步驟之後就完成一次變化。因一卦有六爻,因此每卦的產生都歷經了18變。

在三次變化之後,原本應該計算「過揲」的蓍策數。所謂「過揲」就是歷經三次「掛一」以及「歸奇」之後所剩下的蓍策。這些蓍策有四種可能:24、28、32,及36。分別代表著6(24/4)、7(28/4)、8(32/4),及9(36/4)等四個筮數,後來儒者將此四數定義為老陰、少陽、少陰、老陽。

但是,根據朱熹〈筮儀〉以及眾多的古文資料顯示,古人在揲蓍時極可能未將蓍策四根四根分組放好,而是將全部蓍草依「分二」的過程而只堆成兩堆,因此很難快速計算出實際的過揲數,因此發展出一套「速算法」,一眼看到三次的「歸奇」數就能夠計算出。

這套速算法必需對揲蓍過程非常熟悉,對於不熟悉揲蓍過程的現代人來說,要了解真的有點困難。這裡嘗試言之。

揲蓍的目的是要求得六、七、八、九這四個筮數,49策在掛一之後為48策。由於是以揲「四」在演算,因此可視為總蓍策數是以12個單位(48/4)做為開始的。

整個過程可視為是一個減法,每次「歸奇」都是減去一或兩個單位。若歸奇時(含掛一之數)只拿出四策那麼就是減一,若是拿出八策就是減二。拿出四策就是所謂的「少」(朱熹稱之為「奇」),八策就是所謂的「多」(朱熹稱為「偶」)。比較特殊的是第一變的歸奇,因為是從49(48+1)策開始,因此其歸奇數為5(4+1)或9(8+1),5即是少,9即是多。

簡單說:三錢法裡,每一個銅板代表的是一變,字面代表的是歸奇數為「多」的情況,光面則是歸奇數為「少」。

以下是四種「歸奇」組合的計算法:

  • 三少(三背):12 – 1 – 1 – 1 = 9 = 36策 = 老陽
  • 二少一多(二背一字):12 – 1 – 1 – 2 = 8 = 32策 = 少陰
  • 一少二多(一背二字):12 – 1 – 2 – 2 = 7 = 28策 = 少陽
  • 三多(三字):12 – 2 – 2 – 2= 6 = 24策 = 老陰

現代錢幣問題多…

雖然這樣算是為三錢法的基礎原理找到了最合理的答案,但對於現代的錢幣要如何用來算卦,並沒有找到終極的解答。

當我們把現代錢幣拿出來時會發現到,實在很難用直觀來認定何面為多,何面為少,這問題反而沒有陰陽面(正反面)的認定來得客觀與明確。

所以若要使用三錢法,其實還是建議改回原本以陰陽面來認定為宜。不然,原本為了要操作方便而使用三錢法,結果弄到原理相當複雜,還要先懂得揲蓍法,實在很不實用。只不過,陰陽面的聯想人人不同,因此認定標準實在很混亂。

既然三錢法爭議這麼多,代表這個工具是大有問題的,因此個人認為還是不用為妙。事實上,近來教學上我已全部都改為使用太極丸,不使用銅幣了。而使用過太極丸的學員,也都對於太極丸的方法相當認同與喜愛。

↓ 圖說:

【左】以朱熹〈筮儀〉完成三變之後,過揲的蓍策如圖所示,分為兩堆分別置放於格板中間的兩大刻裡。要計算過揲的蓍策數,必需以左邊三小刻中的「歸奇」數來速算。此三小刻由右至左分別為少(奇)、多(偶)、少(奇),因此得12-1-2-1=8。三枚銅板象徵的就是這三小刻當中的蓍策數是多或少。

【右】我們修改揲蓍過程之後,不用先計算歸奇數(右下角),再換算過揲數。而是直接計算桌面上的蓍策有幾堆即可。如圖,為六。

 

回應

Thanks for the detailed explanation Jack. I often get this question about which side of a Chinese coin is yang and which side is yin. A few years ago I also studied the origin (and interpretation) of the original method, see http://www.yjcn.nl/wp/the-oldest-source-for-the-coin-method/ . Your explanation is much better.

I would not say that any other method is better than the coins method - every method has it's consequences, that's all.

Thanks for mentioning the 'Tai Chi beads' method, I'll take a look at it. Why do you find it better than the coin method? The statistics are the same as with the coins, right? It reminds me of the 16-beads method (https://en.wikipedia.org/wiki/I_Ching_divination#Marbles_or_beads_.28Method_of_Sixteen.29) that is used to produce the same statistics as the yarrow stalks method.

This has nothing to do with the conseqences, it is about experience.

First of all, we can avoid the confusing of coins. And then, Tai Chi bead method is more intuitive than 3 coins.

Here we use Taiwan cypress wood to make Tai Chi bead. Wood is natural material. Everyone love natural material, and the wood is very fragrant.

Last one, Tai Chi bead is more fun than 3 coins, This opinion is from my students.

Well, consequences & experience do not mutually exclude each other. When you choose a certain method the consequence is that you have to deal with the statistics that come with that method. Add to that your own (subjective) experience and you can choose whatever suits you best -as long as you accept the consequences.

I like they idea of making the beads yourself. Unfortunately I am better with my head than with my hands. Tongue Out  Handcraft is not my tour de force.

I’m really surprised that there is a professional Yi-Jing research group located in Netherland.  

Most members are not native speakers, nevertheless, can have a deep insight to the hardest book of classical Chinese.  

I’ve traced your explanation in 2014.  Actually, your idea is an “addition approach”, just coincident to Tai-Chi dices.  

You assign Yang is the side with 2-C (shao, ), representing number of three.  

On the other hand, Yin is the side with 4-C (duo, ), representing number of two. 

Each dicing, you may sum up the numbers of three coins, and can get 9, 8, 7 and 6, accordingly.

 

Jack proposes different scenario, the subtraction approach. 

He sophisticatedly links “shao” is the coin side with few character, and each "shao" side should be counted as the number of one, similar to take away the single-four of 揲筮法

 

Start with opposite routes but eventually reach the same destination. (^^)

繫辭云:天下同歸而殊途,一致而百慮

 

I think both your and Jack’s approaches are good and reasonable.  

To those who prefer the addition method, just assumes the Coin Yang side with number of 3 (odd, the yang number), 

and Yin side with number of 2 (even, the yin number). 

On the other hand, to those who love the subtraction method, he/she may assume few-character side with number one (odd, the yang number), many-character side is number two (even, the yin number), just as what Jack has proposed here.  

 

One thing should be addressed here, I found Master Moxiang Liao 廖墨香, he misled the learners about the Yang/Yin yao ().  The major problem is not on the definition of coin face, instead, he confused what combination would be yang yao and what combination should be yin yao ().  This error makes his statement in-coherent in logic. 

 

\****************************\

  淬煉經金 Profound Refined

Thanks for your reply and clarification. Yes, we have an active Yi community here in The Netherlands. We have bi-monthly meetings, regularly lectures are given, and we have an annual Yijing Symposium. Change is prevalent in The Netherlands :-)

For those who find the coin method confusing I have learned the method of 'one rules many': the one coin that is in minority decides the outcome.

If for instance you throw 2+2+3, then 3 is in minority and decides the outcome: a yang line. With 3+3+2 the 2 is in minority. That way you don't have to count - you only look for the coin that is less represented. Of course when you receive 3+3+3 or 2+2+2 there is no minority and the single digit decides the (moving) line.